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Propagation of Light Beam through Lens-Like Media

with Complex Permittivity

SHINNOSUKE SAWA, MEMBER, IEEE

Afmfract—Primary characteristics of the light beam propagation
through a complex-permittivity lens-like medium are investigated
in more detail than in previous papers, with the help of approximate
wave theory. Explicit general expressions for the spot size and

tie curvature of the phase front of a Gaussian beam as well as the
real-valued ray transfer matrix me derived, and detailed numericaf

investigations are presented. The existence of anew type of propaga-

tion, in which the light beam propagates with constant amplitude of

undulation, neither converging nor diverging, is pointed out. Further-

more, precise conditions are given for the occurence of convergent,

divergent, and critical propagation, and the corresponding profiles

of the real and imaginary parts of the complex permittivity in the
transverse cross section are illustrated. The results of this paper will
be useful for the evxuation of the effects of loss distributions in-

herent in practical optical fibers consisting of lens-me media, and
also for the analysis or synthesis of laser resonators or amplifiers
including a loss or gain distribution.

I. INTRODUCTION

T HE DEVELOPMENT of optical fibers has made re-

markable progress. Roughly speaking, we have two

types of optical fibers, graded index fibers [1] and step

index fibers [2].

The present paper discusses the propagation behaviors

of the light beam along optical fibers consisting of a lens-

like medium (graded index) with a loss or gain variation in

the transverse cross section. The lens-like medium of this

kind may be called, “complex-permii%ivit y lens-like me-

dium,” because of its complex-valued dielectric constant.

The complex-permittivity lens-like medium has already

been analyzed by several authors [3]-[6]. They reported

that the complex-permittivit y lens-like medium has some
interesting properties which do not appear in the lens-like

medium without a loss or gain variation, a so-called real-

valued permittivity lens-like medium. For example, the

light beam with off-axis incident conditions converges

undulating y towards the center axis of the medium as it
propagates, when the gain is highest on axis, while it

diverges and wanders away from the center axis when the

gain is lowest on axis. The previous works [3]-[6], how-

ever, do not provide rigorous criteria for the convergent

and divergent propagation behavior of the light beam.
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Further, those analyses [3]–[6] put emphasis on the

convergent propagation rather than the divergent one,

and hence especially numerical investigations of the diver-

gent propagation appear to be insufficient. Furthermore,

the ray transfer matrix obtained so far [6] is that with

complex components (a complex-valued ray transfer

matrix), so that it is not straightforward to infer the

results of analysis from the matrix by inspection, and it

would be inconvenient for considering various applications

of the medium to optical circuits.

In the present paper, fundamental characteristics of the

light beam propagating along straight and circularly bent

sections of the lens-like medium with complex permittivit y

are studied in more detail than in the previous papers

[3]-[6], by making use of a convenient method of analysis

devised previously [3], [7]. For simplicity and to empha-

size the essential points of the argument, we use a two-

dimentional lens-like medium and limit the analysis to the

paraxial approximations throughout the paper. Explicit

general expressions for the spot size and the curvature of

the phase front of a Gaussian beam as well as the real-

valued ray transfer mat rix (the matrix with real com-

ponents) are derived, and numerical investigations of the

theoretical results are presented. It is also pointed out that

there exists a new type of propagation of the light beam,

the critical propagation, in which the light beam propa-

gates with a constant amplitude of undulation, neither

converging nor diverging. Moreover, the precise conditions

for the convergent, divergent, and critical propagations

to occur are derived, and the corresponding profiles of the

real and imaginary parts of the complex permittivity in

the transverse cross section are illustrated.

II. PERMITTIVITY PROFILE AND WAVE

EQUATION

We consider a two-dimensional model of the complex-

permittivity lens-like medium as shown in Fig. 1. Let the

permittivity of the medium in the straight section be

e(x) = .s, — G,2.E2— ,j(q’ — (7;%2) (1)

where e, — je. is a complex constant and x is the distance

from the center axis of the medium (optic axis). G/ and

G,z measure the degree of the variation of the complex

permittivity t(z).

The real part of (1), Re [c(x) ) = e, – G,2X2, repre-
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Fig. 1. Straight and circularly bent sections of the lens-like medium

tivity 6(zY is r by (1). (b) circul~ly bent section in which
with com lex permittivity. (a) Straight section in which permit-

permittivity c r) is represented as e(r) = c, - G,z(r - R)a -
j[.~ – G:(r – R)’] with r = x + R.

sents the profile of the effective dielectric constant, while

the imaginary part of (1), Im ~~(z) ) = – (q – Gi2z2),

denotes the profile of the net loss or gain, according to

q — G~2x2>0 or q – G~2x2<0.

Fig. 2 illustrates such profiles in the transverse z direc-

tion. For example, Fig. 2(a) represents the case for
~i = Git = O, in which the permittivity of the medium

is given by the real-valued e(x) = c, — G~2x2, Fig. 2(d)

denotes the case for ei >0 and G~2 = O, in which the net

loss is uniformly distributed in the transverse cross sec-

tion of the lens-like medium whose effective dielectric

constant is the same as in Fig. 2(a). Fig. 2(e) shows the

cases that the net loss takes the highest value on axis and

decreases quadratically with the distance x in the cross

section of the same lens-like medium as shown in Fig. 2(a).

For the convenience of the following analysis, we rewrite

(1) in the form

e(x) = e(o) (1 — g%?) (2)

with

g = .9, – jg,. (4)

The parameters used in (3) and (4) are given below

(6)

where g, >0 is assumed, and hence the upper and lower

signs in (6) correspond to the cases of e,Gi2 2 eiG,2 and

~9Gi2 < eiG,2, respectively.

The response of the electromagnetic fields of light beams
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Fig. 2. Illustrations of the profiles of the effective permittivity
Re [c(x) /e] (real part of e(z)/%) and the net loss or gain
Im [e(z)/,,] (imaginary part of e(z)/.,) in the transverse cross
section of the complex-permittjvity lens-like medium. It is as-
sumed that the curves in (e) and (i) correspond to the csses (1)
qG~2 > ~iGrz, (2) qGi2 = ~iG,2 and (3) ~Gia < c;G.Z, respectively,
and also that % > 0 and G,z >0 (W = ei/%).

propagating along the medium with the permittivity

given in the form (2) can be approximately determined

from the wave equation

a2v

~ -t:+ IC2(0)(1 –gw)v = o (7)

where

k (0) = @[p~(0) ]’/2 = k, – jiii (8)

with

k, = @(~~~)1~2~[ ( 1 + ~i2\~?) 1/2+ 1]/2) 1/2, (> o)

(9)

iii = +cl.l(per) 1/2{[(1 + ei2/q?)l/2 – 1]/2)1/2, (Ci $ O).

(lo)

In the foregoing equations, sinusoidal time dependence of

the fields with angular frequency u is assumed and p

denotes the permeability of the medium [3], [7].

If we put

V(z,z) = U(z,.z) exp [–jk (0)2] (11)

with the assumption

(12)
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and substitute this into (7), we find that the field distri- yn=~{k,–j?ct– (n+*) (9r–ti9i)l (17) ‘

bution function U (x,z) satisfies the paraxial wave equation
1

(

cosg.z — j[S2(0)/~2]singz—= —
6ZU
—–j2k(o) ::–k2(o)g2z2u = o

St(z) )
(18)

S2(0) cosgz–j[f12/S2( 0) Jsing.2

6 axz
(13)

[;:)l[ 1[ 1

TU TM 6(0)

which determines the response of the electromagnetic fields
. (19)

of the light beams along the straight section. 7’21 2’22 6’ (0)

In a similar fashion, we obtain the corresponding wave

equation in the circularly bent section as shown in Fig.
where l/i22 ( = glc (0) ) is the characteristic wavefront

1(b) as follows
coefficient, and n denotes the mode numbers of the normal

where

Q = g(l – 2/g2R2) 1/2= & – jo,

with the parameters

“=(:{[’-G%4+2-+)I
})*1+ ‘y;;?) 1’2.

modes. [~ti] is the real-valued ray transfer matrix, unlike

the complex-valued one obtained so far [6]. The com-

(14) ponents of the real-valued ray transfer matrix [Ti,] are

real and given below

(15)
Tn = [{K. – K~(gP – @p2)u(z) } cosh g,z

+ {Kau(z) – K6(gP – V(Z))} sinh g~z] cos g,z

– [{K,(1 + gpv(z)) – &U(Z)/~}] cosh g,z

+ {K~(l + g,/flj)u(z) – IGv(z) } sinh g;z] sin g,z

(20a)

Tlz = (1/g,e) [[{1 + gp~(z) – Kcu(z) /Qp2} cosh giz

(16)
+ {u(z) (1 + g,/0p2) – K.v(z) ) sinh g,z] sin g,z

+ [{ (g, – l/f&2)u(z) – K.] cosh giz

In the above expression, R represents the radius of curva- + {g, – o(z) – ZGu(z) } sinh g,z] cos g,z] (20b)
ture of the circular bend.

TZI = gr[[{Ka(gP + l/$J})u(z) – -K~(l + g})

III. BEHAVIORS OF LIGHT BEAMS – Kb(gp – i/~j)U’(Z) ] cosh g~z

A. Behaviors in a Straight Section

An important first step to clarify the behavior of the

light beams along the medium whose permittivity is given

by (2) is to analyze the propagation of a Hermite Gaussian

wave. Thus we assume that incident beam at z = O is

expressed as a Hermite Gaussian beam having input

wavefront coefficient 1/S2 (0) together with the input

slope #(0) and the input displacement 6(0) of the beam

center from the optic axis z = O. Then, the field distribu-

tion function U(x,z) is determined from (13), according

to the convenient method of analysis [3], [7], as shown

in the Appendix. As a result, the primary parameters,

i.e., the propagation constant of the normal modes in the

straight section y., the wavefront coefficient 1/S2 (z), the

trajectory of the beam center 5(z), and its slope-#(z) are
derived as follows:

I The wavefront coefficient 1/S2(z) used in the present paper is a
complex parameter to characterize a Gaussian beam, and is defined
with the spot size w(z) and the radius of phase front curvature l?(z)
of a Gaussian beam as

1 .&+j&.
s’(z) W2(Z)

This parameter can also be related to the well-known complex beam
parameter I/g(z) [11] as

1 k,
—=jm.
S2(Z)

+ {~a(g, + V(Z)) – ~b(l + g~)U(Z) + ~ad(.?)

+ &iV’ (,?)) sinh g,z] cos g,z

– [{K.[1 – g,v(z)] + Kb(l + g?)u(z)/Q?

– Kau’ (Z) /&.2 + &gpV’ (Z) ) cosh g~z

+ {K.(1 – g,lfl;)u(z) + K,(l + gp2)v(z)

– Kav’ (z) + Kbu’ (z) ( 1 + g,/Qj) ] sinh g~z]sing,z]

(20C)

T= = (1/f3)K[{(l + g?)u(z) + K.(1 – gp/~?)u(z)

+ (1 + gP/!2P2)u’(z) – KCV’(Z) ) sinh g~z

+ {(1 + gj)~(z)/~3 + Kc(l – g,v(z))

+ 9,V’ (z) — Ku’(z) /QP2} cosh g;z] sin g.z

+ [{(1 + g}) ’u(z) – Kc(g, + V(Z)) – Ku’(z)

– v’(z) ] sinh giz + { 1 + goz – K.(gP + l/L?,2)u(z)

+ (9, – l/f2p2) u’ (Z) ) cosh g~z] COS grz] (20d)

in which

(21a)
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g, + QP2 1
=l+gj– ——

{}
=~”Im $ =~. (27)

l+Q: @ ii ,

B. Behaviors in a Circular Bend

—
“%?”’)(l-%)} ‘21’)

The behaviors of a light beam in a circular bend as

shown in Fig. 1 (b) can be described in a similar manner as

pl Cosh ‘gi.z —
u(z) =

PSsinh 2giz + P2 cos 2g,z - QPzp4sin 29,z

ps cosh ‘2g~z – pl sinh 2giz — pd cos 2g,z – (pz/!JP2) sin 2g,z

(1/Q3) (Ps cosh ‘g,z –
v(z) =

PI sinh 2g;z) + QP2P4cos 2g,z + PSsin 2g,z

PScosh 2g,z – PI sinh 2giz – P4 cos 2g,z – (PZIOP2) sin 2g,z

1 du(z) 1 dv(z)
U’(Z) = —— v’(z) = ——

g, dz ‘ g, Clz “

In (20a)- (20d) and (21a) – (21c), the parameters gP, flo,

s,, s~, and p j (j = 1,2,3,4) are represented as

9P = 9i/9r, “,=(Re{+}/’m{iw
s,=(Re{~}/Ite{&}~

‘=(lm{:}/lm{FiJY
()P1=1+:4+W 1+1

S!.4

(22)

Moreover, the expressions for the spot size w(z) and

the curvature of the phase front I/f?(z) of the Gaussian

beam are obtained, respectively, as

‘(z)‘(”(z’/Re{:})
1 —v(z)

{}
—= —Re$.
R (Z) lc,u(z)

(23)

(24)

For the special case that 1/N (0) = 1/ f22, we have the

simplified results for 6(z), #(z), w(z), and l/R (z) as

follows :

(21C)

in the straight seotion. The result of the analysis yields

the response of a Hermite Gaussian wave beam with the

same incidence conditions as in the straight section as

follows: the wavefront coefficient 1/$2(z), the trajectory

of the beam center $ (z), and its slope ~’(z) are obtained as

1 1

(

Cos gz – j[L32 (0) /ii2] sin @z

s’ (z)r = i~ cos fjz – j[ti2/S2 (0) ] sin ~; )
(28)

where

(31)

In (30), the parameters @o,6,, u(z), and u (z) are obtained

from (21a) -(21c) and (22) by replacing all the parameters

9. and gi in those expressions by tir and ~i given in (16),
respectively, The components of the real-valued ray trans-

fer matrix [~i~] are also obtained from (20a)- (20d) and

(21a) -(21c) with the same procedure.

Furthermore, the spot size ti (z) and the curvature of

the phase front l/f? (z) of the Gaussian beam are derived

[Z:)l”exp(gaz)r:::::::
(l/gr) sin g,z

1[ 1

8(0)
(25)

cos g.z + (g;/g,) sin grz 6’(0)

({})

-112 from (23) and (24) by replacing all the parameters u(z),
w(z) = Re ~ = Wo

’26) v(z), and l/f12 in those expressions by u(z), O(Z), andQ2
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Fig,3. Propagation behaviors of theconvergent light beam ~ided
along the straight section. (a) Normalized trajectory of the beam
center. (b) Normalized spot size. (g//g, = –0.01, ~i/~, = 10–s,
6’(0) = O, R(0) = R@)

1/~2, respectively, where 1/~2 represents the characteristic

wavefront coefficient in the circularly bent section.

Consider the special case that the light beam with the

matched input wavefront coefficient l/AS2 (0) = 1/~2 is

incident upon the circularly bent section. In this case, the

expressions for $(z), ~’(z), w(z), and l/~ (z) are simplified

to

+ 6’ (o) 1— sin@ + & (32)
Q,

(+ 6’ (0) cos @.z+ f sin&z )1(33)

([1)1 –112

ti(.z) = Re =- = ?&
Q2

(34)

where

(35)

(36)

C. Numerical Examples and Discussions

According to the theoretical results obtaineti in the pre-

ceding sections, let us illustrate numerically the propaga-

tion behaviors of the Gaussian beam in the straight and

circularly bent sections. Figs. 3-6 show the calculated

trajectories of the beam center 6(z) and ~(z) normalized

by the input value 3(0), and the calculated spot sizes

w(z) and ti (z) normalized by the characteristic spot sizes

W. and Go, as a function of the normalized distance z/g,–I

or z/ ~,.–l. The medium constants gi/gv, ~i/~v2 e,/ e,, and

l/Q,R and the input conditions of the light beam, the

values of 8(O), 8’(0), IO(O), ti(0), R(O), and R(O) used for

the numerical calculations are given in these figures. The

curves (I), (II), and (III) correspond to the cases that

w(0) = 2w0, w(0) = wO, and w(0) = wo/2 in the straight

section, and w(0) = M&, w(0) = tio, and w(0) = tiO/2 in

the circularly bent section, respectively, where w(0) is the

input spot size. Figs. 3 and 5 illustrate examples of the

convergent propagation for the cases of gi/gq ~i/~V =

– 10–2, and Figs. 4 and 6, those of the divergent propaga-

tion for the cases of g./g,, @i/~r = 10–2. Generally, it is

shown that the convergent propagation as shown in Figs. 3

and 5 occurs for the negative values of gi/gr and ~i/~,,

while the divergent propagation as shown in Figs. 4 and 6

occurs for the positive values of gi/g, and ~i/Dr. Further-

more, it follows from ( 18)– (23) and (28)– (35) that the

critical propagation occurs for zero values of gi/g~ and

~i/~v, in which the light beam propagates with constant

amplitudes of the undulations of the beam trajectory and

the spot size, neither converging nor diverging.

If we roughly compare the propagation behaviors of the

light beam in the circularly bent section with those in the

straight section, the following becomes clear: in the

straight section the undulating trajectory decreases or

increases in amplitude with increasing distance z for all

cases of (1), (II), and (III), repeating sinusoidal and

monotonous oscillations as shown in Figs. 3(a) and 4(a),

while in the circularly bent section it exhibits extremely

complex oscillations as in Figs. 5(a) and 6(a) except for

the case (II) in which the matching conditions for the

wave front coefficient are satisfied. The response of the

spot size, however, displays no special difference in the

straight and circularly bent sections, as is clear from Figs.

3 (b)-6(b) .
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Fig. 4. Propagation behaviors of the divergent light beam guided
along the straight section. (a) Normalized trajectory of the beam
oenter. (b) Normahzed spot size. (gi/g, = o.o1,d+ = lo–3,
6’(0) = o, R(o) = Ro.)
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Fig. 5. Propagation behaviors of the convergent light beam guided
along the circularly bent section. (a) Normalized trajectory of the
beam center. (b) Normalized spot size. (~& = s 0.01, ~i/~, =
10-’, l/j.R = 0.2, 6’(0) = O, 6(0) = 280, R(O) = Ro.)

D. Physical Explanation of the Convergent, Divergent,

and Critical Propagation Behavior

Consider a light beam guided along the straight section

of the lens-like medium, the incidence conditions of which

are assumed to be arbitrary within paraxial aPJ?roxima-

tions. The light beam can be expressed in terms of an

infinite series of normal modes of the medium, Hermite–

Gaussian wave beams. The normal modes in the complex-

permittivity lens-like medium proceed with the propaga-
tion constant -y. given by (17), whose field intensities vary

along the z direction with the function exp ( —CW), in

which an denotes the real part of y.

an = Re {-y~) = iii — (n + *)% (37)

Begin with the case of y, <0. In thk case, the second

term of (37) is always positive, and hence an assumes large

positive values for increasing mode number n. Therefore,

the more n increases, the more rapidly the function

exp ( —a~z) decreases with increasing values of a That is

to say, the higher order modes decay more rapidly with

increasing values of z than the lower order modes. Hence

for this case, convergent propagation of the light beam

arises as shown in Fig. 3. Contrary to this, for the case of

gt > 0, the second term of (27) is negative, so that ~.
becomes large in negative values for increasing n. Accord-

ingly, for larger n, exp ( —aw) grows more rapidly ~th

increasing z, so that the higher order modes become in-

creasingly dominant as the light beam propagates, which
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Fig. 6. Propagation behaviors of the divergent light beam guided
along the oircularl bent section. (a) NoLm#ized trajectory of the

i%be~m center. (b) ormsked spot size. (gi/g, = 0.01, ,i/,, = 10-~,
l/g,R = 0,2, #(0) = O, 6(0) = 2&, R(O) = ~,.)

causes divergent propagation as illustrated in Fig. 4. On

the other hand, for the case of gi = O, we have an =

k~ = constant, independent of mode number n, so that

exp ( —anz) takes the same values for all the normal

modes, As a result, the ratio of the normal modes to each

other does not vary as the values of z increase, which

implies that critical propagation with the constant ampli-

tudes of undulations occurs.

A similar physical explanation is also possible for the

propagation behavior of the light beam along the circu-

larly bent section.

E. Relationship between the Complex-Permittivity Profile

and the Conditions for the Convergent, Divergent, and

Critical Propagations

The conditions for the convergent, divergent, and criti-

cal propagations of the light beam gi <0, gi >0, and

gi = O can be rewritten as e,G~z < e~G,z, e,G/ > ~iG~,
and e,G? = e~G,2, respectively, in terms of the medium

constants characterizing the complex-permittivity profile.
If we introduce new parameters e, and G? defined by

ePs E$/e, and GPZs G~t/Gqz, we can illustrate the above

conditions in the eP-GP2plane as shown in Fig. 7, assuming

e,G,z > 0. The hatched region above the oblique line
G? = e. is the divergent region leading to divergent

propagation, while the region below the straight line

G: = e, is the convergent region causing convergent
propagation. Moreover, the region on the oblique line
G? = G@is the critical region giving rise to critical propa-

gation. The points a,b, 000,i in the same figure correspond

to the complex-permittivity profiles as illustrated in

Fig. 7. Convergent region (f3f12 < cp), divergent region (Gp~ >
e,) and critical region (G$ = .,), resumingthat,,G~>06
Diagonal area: divergent region according to the present analysis.
D&ted area: @ivergent region according to the previous analyses

Fig. 2(a), (b), (c),,.., (i), respectively. The points el, ez,

e~, and il, iz, is in Fig. 7 correspond to the profiles (1),

(2), (3) in Fig. 2(e) and (i), respectively. The profdes
such as Fig, 2(b), (g), (h), and (1) in Fig. 2(e) and (i)

belong to the divergent region in Fig. 7 and give rise to
the divergent propagation of the light beam as shown in

Fig. 4, whereas the profiles such as Fig. 2(c), (d) and (3)

in Fig. 2(e) and (i) belong to the convergent region in

Fig. 7 and lead to the convergent propagation as shown

in Fig. 3. Furthermore, the profiles like (2) in Fig, 2(e)

and (i) belong to the critical region, causing the critical

propagation in which the light beam propagates with a
constant amplitude of undulation.

Converging and diverging behaviors of light beams have

already been discussed in the previous papers [3)- [6].

In those papers, however, the parameter corresponding
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to g~used in the present paper

&of [6]) is approximated as

qi + + { (1/2 G)[(G!

(for example, the parameter

+ Gi4) 1/2 _ G$J}112 (38)

using the assumption ] ei ] << c,, where the upper or

lower sign is chosen, depending on whether G? z O or

Gi2 <0.

Accordingly, the divergent and convergent regions

presented in the previous papers [3]-[6] would be repre-

sented by the upper half-plane GP2>0 and the lower half-

plane GPZ<0 of Fig. 7, respectively, and also the critical

region by the abscissa Gpz = O, disagreeing with the

preceding results of the present paper. Consequently,

profiles such as Fig. 2(h) and (f), in which both G~2 >0

and q <0, or both G~2 <0 and G >0, are assumed with

e, > 0 and G,z > 0, would belong to the divergent and

convergent regions, respectively, agreeing with our results.

On the contrary, the profile (3) in Fig. 2(e), in which

Gi2>Oand q> Oaswellas e,> Oand G2>0 are

assumed together with ~tGiz < ciG?, would belong to the

convergent region of Fig. 7, and hence cause divergent

propagation, according to the previous analyses [3]-[6],

The result does not agree with the present paper, where a

profile like this should lead to convergent propagation,

because of the convergent assumption ~vGiz < ciG,2, as

stated before. Furthermore, the profile (1) in Fig. 2(i),

in which Giz <0 and ~i <0 are assumed with e. >0

and G,2 >0 as well as ~VGiz> e~G?) would be regarded

as “convergent, “ if we accepted the conclusion of the

previous papers [3]-[6], while according to the present

paper such a profile must be regarded as “divergent”

because of the assumption e.G~2> e~G~, as described

before, Moreover, profiles such as in Fig. 2(d) and (g), in

which both Gi2 = O and q >0, or both G~2 = O and

q < 0, are assumed together with G > 0 and G,2 > 0,

would be regarded as ‘(critical,” if the previous conclusion

were applied, whereas according to the present paper the

profile as in Fig. 2(d) must be regarded as “convergent,”

since the convergent condition ~i.Gi2 < ~iG~ is satisfied

with the assumption Giz = 0 and ~i >0, and the profile

as shown in Fig. 2(g) must be regarded “divergent,” since

the divergent condition ~rGiz > ~iG~ is satisfied with the

assumption Gi2 =Oandci <O.

Thus we must conclude that the previous papers [3]-[6]

do not always yield satisfactory results in regard to the

criteria for the convergent, divergent, and critical propa-

gation behavior of the light beam along the lens-like

medium with complex permittivity.

IV. CONCLUSION

The primary characteristics of the light beam guided

along the square-law lens-like medium with loss or gain

have” been analyzed in more detail theoretically and

numerically within the paraxial beam approximations.

As a result, the effect of the loss or gain dktribution of the

medium on the propagation of the light beam has been

clarified more complete] y than in the previous analyses.

The present paper presents useful material not only for

the evaluation of the effects of the loss distribution inherent

in practical optical fibers consisting of lens-like media, but

also for the analysis or synthesis of laser resonators or

amplifiers including a loss or gain profile in the transverse

cross section [8], [9], The results of the present paper will

also be applicable to the optical image transmission system

consisting of lens-like media with a loss or gain variation

[10].

APPENDIX

SOLUTION OF THE PARAXIAL WAVE

EQUATION (13)

An exact solution of (13) is a light wave with Hermite-

Gaussian transverse field distribution, Thus we express the

field distribution function in the form

U(x,z) = exp [A(z)x2 + B(z)* + C(z)]

●Hem[D (Z) z + ~(Z)] (Al)

where A (z), B(z), C(z), D(z), and F(z) are unknown

parameters, being functions of z, and H..(X) refers to the
Hermite polynomial of the nth order, defined as

[“/2] (– l)~(2x) “-z~Hen(x)= n! ~ (A.2)
~=o ~!(~ — z~)!

with

I
rl/2, for n = 2,4,6,”0.

n/2 =

(n – 1) /2, for n = 1,3,5,...,

Substitute (A. 1) in (13) and use the recurrence relation

2(n – l) H.n.,(X) = 2XHe..,(X) – H,.(x) (A.3)

to eliminate the terms of H,..,(X). Then we obtain

+ {A4(z)z + &(Z) }“H.._@(z)z + ~(z)] = O (A.4)

where Ai(z) (i = 1,2,. . . ,5) denotes functions of z alone,

includlng A (z) ,B (z) -F (z) and their first derivatives with

respect to z.

By rearranging the terms in (A.4) with the help of the

expansion of the Hermite polynomials, we can express

(A.4) as a descending power series in x. To determine the

unknown parameters A(z), B(z) -F (z), we compare terms

with equal powers of z and have the following set of dif-

ferential equations:

cZA(Z)
,j2k(o) —d~ = 4A’J(2) – gw(o)

dll(z)
j27c(0) —d- = 4A (Z)~(Z)

Clc’(z)
j2k(o) —d&-’ = B2(z) + 2A (z) – 2nD2(z)
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dD (z)
jk (0) ~ = 2A(z)D(z) +~3(Z)

di?(z)
jk(0) ~ =B(z)D(.z) +~(z)D2(z).

Integrating (A.5), we obtain

k(0) 1 dt(z)
A(z) = –j———

2 t(rz) dz

dA(z)
B(z) = –2A(z) A(z) –jlc(0)~

k (o) dA(.z)
C(z) = A(,z) A’(z) +j~A(z)~

– (n+ ~) In$(z) – nln D(z) + IL

F(z) =D(z){K3t(.z) –A(z)}

with

$(2) =alexp(jgz) +a2exp(–jgz)

A(z) = b,exp (jgz) +blexp (–jgz).

A’(z) =~A(z) (All)

(A.5) A(z) = –~ (

cosgz —j[A’2(0)/~2] sing.2

2S2(0) cosg> – j~f22/S2(0)]singz )
(A.12)

In the foregoing expressions, al, aa, bl, b2, KI, Kz, and K3

represent integration constants to be determined from the

incidence conditions of the light beam.

For convenience, let the field distribution function of

the input light beam U(Z,O) be expressed as

Q = l/[gk(o) ]1/’. (A.13)

In the above expressions, l/AS’2(0) is the input wavefront

coefficient of the light beam and 1/$22 is the characteristic

wavefront coefficient. Furthermore, A(0) and A’(0) are

unknown constants to be determined from the input slope

3’(0) and input displacement 6(0) of the beam center.
From (A. 10), (A. 11), and (2) –(4) in the text, we see

that A(z) and A’(z) in (A.9) are complex-valued, and

hence do not represent the beam trajectory of the light

beam 6(z) and its slope ~’(z), respectively. To find 6(z)

and #(z), let A(z) and A’(z) be separated into the real

and imaginary parts as

, A(z) = A,(z) + jA~(z)

(A.6) A’(z) = A; (Z) + j&’(z) (A,14)

and let the sum of the first and second parts of the expo-

nential term in (A.9) be transformed as

A(z)~x – A(z)}’ –jk(0)A’(z)z

(A.7) ( D /..\ >2

[
U(Z,O) = exp –

{z – A(o)}’

2s’(0)
– jk(0) A’ (0) z1
“HeTxO)l‘A’)

and determine the integration constants and the unknown

parameters A(?), B(z) -F(z). As a result, we get from

(Al)

U(z,z) = exp [A (Z) {x – A(z) )2 - jk(0)A’(z)z

+ i~(0)/2]{A(2) A’ (Z] – A(O) A’(0)}]

(COSgz + .j[fP/S2 (0) ] sin vz) “12

“ (Cos gz — j[f12/S2 (0) j sin gz) @+’}1’

.H..
[

x – A(z)

S(0) {s0s2 gz + [f14/S4 (0)] sin’ gz ) 1/21

t
=A(z) z+=

2A,(z) }

“~ ~A,(z)B,(z) – A,(z) B,(z) }
– 3 A,(z)

{

Br’ (z)
+ A (z) A2(z) – 4A,2(2)

}

(A.15)

where A.(z) and A;(z) are the real and imaginary parts

of A (z), and B.(z) and Bi (z) represent the real-valued

functions as

l?,(z) = –2~A,(z)A,(z) – A,(z) A,(z) ]

+ krA/ (Z) – k,A; (Z)

B,(z) = –2{A,(z) A,(z) + Ai(z)Ar(z) }

– k,A;(z) – k~A/ (Z). (A.16)

From (A. 15) and (A. 16), we get the expressions for the

trajectory of the beam center 8(z) and its slope #(z) as

B, (Z) A,(z)
a(z)=–—=

ZA, (Z)
A,(z) – — A~(z)

.4,(2)

lc;A; (Z) – k,A/ (Z)

+
2A,(z)

(A.17)

(A.9)

in whjch t?(z) = ;8(2). (A.18)

A(z) = A(O) cosgz + ~singz (A.10) Puting z = O in (A. 17) and (A. 18) yields two equations
9 in two unknowns, A(0) and A’ (()). Solving for these un-
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knowns, we obtain

{
A(0) = 1 –

I:E.:Q(&+fi)}’(”)

1

+ 1 + 2k,S:Q
6’ (o)

(A.19)

(A.20)

where

‘XiAx%-fi)] ‘A”)
with

1

{}

1
=Re~, —=~ {1

–Im$Qi2

1

{}

1 1

{}

1

~ =Re~, — . (A.22)– – ‘m ~z(o)~z –

Substituting (A.19) and (A.20) in (A.14), (A.17), and

(A.18), we can determine a(z) and 8’ (z), and hence from

(A.9), the response of Herrnite-Gaussian wave beam with

the input displacement of the beam center 3(0) and

its ‘slope 6’(0) as well as the input wavefront coefficient

1/s2 (o).

The expressions for the spot size w(z) and the curvature

of the phasefront l/R(z) of the Gaussian beam are also

derived from the real and imaginary parts of A (z) as

W(Z) = l/[ —2A. (z)]lJ2 (A.23)

(A.24)

Lengthy and tedious algebraic manipulations on (A.17),

(A,18), (.A.23), and (A.24) together with derivations of

A,(z) and Ai(z) from (A. 12) lead to the final results, (19),

(23), and (24) in the text.

If we assume the incidence conditions 1/S2 (0) = l/fl’,

&(0) = O, and &(0) = O in (A.9), we have the simplified

expression for U (x,2) as

U(Z,Z) = exp [j(n + ~)gz – X2/2W]”H.=[X/Q]. (A.25)

Substitution into (11) yields

V(z,z) = exp [–,j{ii(0) – (n+ *)g)z]

“exp [–~(Z/Q)2]H,.[X/Q]. (A.26)

From (A.26), we find the propagation constant of the

normal modes in the straight section -yn as

T. = j{k(o) – (n+ +)g}
= j{k, –j/l?;– (n+ *)(g, –jgJ). (17)
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