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Propagation of Light Beam through Lens-Like Media

with Complex Permittivity

SHINNOSUKE SAWA, MEMBER, IEEE

Abstract—Primary characteristics of the light beam propagation
through a complex-permittivity lens-like medium are investigated
in more detail than in previous papers, with the help of approximate
wave theory. Explicit general expressions for the spot size and
the curvature of the phase front of a Gaussian beam as well as the
real-valued ray transfer matrix are derived, and detailed numerical
investigations are presented. The existence of a new type of propaga-
tion, in which the light beam propagates with constant amplitude of
undulation, neither converging nor diverging, is pointed out. Further-
more, precise conditions are given for the occurence of convergent,
divergent, and critical propagation, and the corresponding profiles
of the real and imaginary parts of the complex permittivity in the
transverse cross section are illustrated. The results of this paper will
be useful for the evaluation of the effects of loss distributions in-
herent in practical optical fibers consisting of lens-like media, and
also for the analysis or synthesis of laser resonators or amplifiers
including a loss or gain distribution.

I. INTRODUCTION

HE DEVELOPMENT of optical fibers has made re-

markable progress. Roughly speaking, we have two
types of optical fibers, graded index fibers [17] and step
index fibers [27].

The present paper discusses the propagation behaviors
of the light beam along optical fibers consisting of a lens-
like medium (graded index) with a loss or gain variation in
the transverse cross section. The lens-like medium of this
kind may be called, “complex-permittivity lens-like me-
dium,” because of its complex-valued dielectric constant.
The complex-permittivity lens-like medium has already
been analyzed by several authors [3]-[6]. They reported
that the complex-permittivity lens-like medium has some
interesting properties which do not appear in the lens-like
medium without a loss or gain variation, a so-called real-
valued permittivity lens-like medium. For example, the
light beam with off-axis incident conditions converges
undulatingly towards the center axis of the medium as it
propagates, when the gain is highest on axis, while it
diverges and wanders away from the center axis when the
gain is lowest on axis. The previous works [3]-[6], how-
ever, do not provide rigorous criteria for the convergent
and divergent propagation behavior of the light beam.
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Further, those analyses [31-[6] put emphasis on the
convergent propagation rather than the divergent one,
and hence especially numerical investigations of the diver-
gent propagation appear to be insufficient. Furthermore,
the ray transfer matrix obtained so far [6] is that with
complex components (a complex-valued ray transfer
matrix), so that it is not straightforward to infer the
results of analysis from the matrix by inspection, and it
would be inconvenient for considering various applications
of the medium to optical circuits.

In the present paper, fundamental characteristics of the
light beam propagating along straight and circularly bent
sections of the lens-like medium with complex permittivity
are studied in more detail than in the previous papers
[87-[67], by making use of a convenient method of analysis
devised previously [3], [7]. For simplicity and to empha-
size the essential points of the argument, we use a two-
dimentional lens-like medium and limit the analysis to the
paraxial approximations throughout the paper. Explicit
general expressions for the spot size and the curvature of
the phase front of a Gaussian beam as well as the real-
valued ray transfer matrix (the matrix with real com-
ponents) are derived, and numerical investigations of the
theoretical results are presented. It is also pointed out that
there exists a new type of propagation of the light beam,
the critical propagation, in which the light beam propa-
gates with a constant amplitude of undulation, neither
converging nor diverging. Moreover, the precise conditions
for the convergent, divergent, and critical propagations
to occur are derived, and the corresponding profiles of the
real and imaginary parts of the complex permittivity in
the transverse cross section are illustrated.

II. PERMITTIVITY PROFILE AND WAVE
EQUATION

We consider a two-dimensional model of the complex-~
permittivity lens-like medium as shown in Fig. 1. Let the
permittivity of the medium in the straight section be

(1)

where €. — je, is a complex constant and z is the distance
from the center axis of the medium (optic axis). G2 and
G? measure the degree of the variation of the complex
permittivity e(r).

The real part of (1), Re {e(2)} = ¢ — G,%2%, repre-

e(x) = & — G2 — j(e; — G22?)
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(b)

Fig. 1. Straight and circularly bent sections of the lens-like medium
with complex permittivity. (a) Straight section in which permit-

tivity e(z) is given by (1). (b) Circularly bent section in which
permittivity fr‘) is represented as e(r) = ¢, — G2(r — R)? —
Jles — G2(r — R)?] withr = z + R.

sents the profile of the effective dielectric constant, while
the imaginary part of (1), Im {e(2)} = — (e&; — G22),
denotes the profile of the net loss or gain, according to
€ — Gi2$2 > Oor € — Gi%‘? <0.

Fig. 2 illustrates such profiles in the transverse « direc-
tion. For example, Fig. 2(a) represents the case for
& = G2 = 0, in which the permittivity of the medium
is given by the real-valued e(z) = ¢ — G,%2% Fig. 2(d)
denotes the case for ¢; > 0 and G2 = 0, in which the net
loss is uniformly distributed in the transverse cross sec-
tion of the lens-like medium whose effective dielectric
constant is the same as in Fig. 2(a). Fig. 2(e) shows the
cases that the net loss takes the highest value on axis and
decreases quadratically with the distance x in the cross
section of the same lens-like medium as shown in Fig. 2(a).

For the convenience of the following analysis, we rewrite
(1) in the form

e(z) = €(0) (1 — g%2?)

2

with
€(0) = & — je; (3)
g=gr — jgu (4)

The parameters used in (3) and (4) are given below

- [1 ([(a + &) (@A + GH T + G2 + G)]/
9= 2 &2 + eiz

(5)
= d:l:l ([(672 +e2) (G4 + GH T2 — G2 — eiG’f)]l/"’
. 2 & + €7
(6)

where g, > 0 is assumed, and hence the upper and lower
signs in (6) correspond to the cases of €G? 2> €G.* and
G2 < G2 respectively.

The response of the electromagnetic fields of light beams
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Fig. 2. Tlustrations of the profiles of the effective permittivity

Re [e(x)/e] (real part of e(z)/e) and the net loss or gain
Im [e(z)/e] (imaginary part of (z)/e) in the transverse cross
section of the complex-permittivity lens-like medium. It is as-
sumed that the curves in (e) and (i) correspond to the cases (1)
«G? > &G, (2) G2 = &Gt and (3) G2 < G2 respectively,
and also that ¢ > 0and G2 > 0 (e = &/e). .

propagating along the medium with the permittivity
given in the form (2) can be approximately determined
from the wave equation

vV 0V
St TROA -V =0 (D)
where
E(0) = o[ue(0) V2 = k, — jk; (8)
with
IC,- = w(uer)”z{[(l + €i2/5r2)1/2 + 1]/2}112y (> 0)
(9)
ki = Fo(ue){[(1 + e2/ed)2 — 17/2}12, (30).
' (10)

In the foregoing equations, sinusoidal time dependence of
the fields with angular frequency o is assumed and u
denotes the permeability of the medium [37], [7].

If we put

V(zz) = U(z,2) exp [—jk(0)z] (11)
with the assumption
2 au
7 <<2|k(0)]‘—a—z—’ (12)
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and substitute this into (7), we find that the field distri-
bution function U (2,2) satisfies the paraxial wave equation

2 9
eu _ J72k(0) A k2(0) 22U = 0 (13)
,  0x? 9z
which determines the response of the electromagnetic fields
of the light beams along the straight section.

In a similar fashion, we obtain the corresponding wave
equation in the circularly bent section as shown in Fig.
1(b) as follows
U U 2 ~
2k (0) i k*(0) (— ki + §2x2) U=0 (14)

dx?

where

g = g(1 — 2/g?R?*)V? = §. — jg, (15)

with the parameters

ﬁr = gr)‘+ + gi)‘_r

1] 4 . L\
+ = — — e 2 e g2 e —
A ¥ {[1 g B (g’ & R)]

L4 2_<9_—_g_>})’ (16)

g’i = g1,>\+ - gr)\_

| g [*R?

In the above expression, R represents the radius of curva-
ture of the circular bend.

III. BEHAVIORS OF LIGHT BEAMS

A. Behaviors in a Straight Section

An important first step to clarify the behavior of the
light beams along the medium whose permittivity is given
by (2) is to analyze the propagation of a Hermite Gaussian
wave. Thus we assume that incident beam at z = 0 is
expressed as a Hermite Gaussian beam having input
wavefront coefficient! 1/82(0) together with the input
slope 6’(0) and the input displacement 3(0) of the beam
center from the optic axis ¢ = 0. Then, the field distribu-
tion function U(z,z) is determined from (13), according
to the convenient method of analysis [3], [7], as shown
in the Appendix. As a result, the primary parameters,
i.e., the propagation constant of the normal modes in the
straight section v, the wavefront coefficient! 1/8%(2), the
trajectory of the beam center 3(z), and its slope-8’(z) are
derived as follows:

1 The wavefront coefficient 1/82(z) used in the present paper is a
complex parameter to characterize a Gaussian beam, and is defined
with the spot size w(2) and the radius of phase front curvature R(z)
of a Gaussian beam as

T S

5@ -~ we RE

This parameter can also be related to the well-known complex beam
parameter 1/q(z) [11] as

1 .k
5@ "
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Yo = Jik, — gk — (n + ) (9. —79:) } (a7)

11 (cos gz — J[82(0)/9%] sin gz) (18)
S2(2)  82(0) \cos gz — 5[02/82(0) ] sin g2

[a(z)} [Tu THHa(O)]
8 (2) B Ta Te]|6'(0)

where 1/Q?(=¢gk(0)) is the characteristic wavefront
coeflicient, and n denotes the mode numbers of the normal
modes. [7';;] is the real-valued ray transfer matrix, unlike
the complex-valued one obtained so far [6]. The com-
ponents of the real-valued ray transfer matrix [T.,] are
real and given below

Tu = [{K. — Ko(g, — 1/9.5)u(2)} cosh gz
+ {Ku(z) — Ky(g, — v(2))} sinh g:z] cos g,z
— [{Ke(1 + gv(2)) — Kau(2)/Q,2} cosh gz
4+ {Ku(1 + g,/ u(2) — K (2)} sinh g.2] sin g,2
(20a)
(1/g:0)[IL{1 + g, (2) — Keu(z)/2?} cosh giz
4+ {u(z) (1 4+ ¢9,/2.2) — Ko (2)} sinh g,2] sin g2
+ [{(g, — 1/2)u(2) — K,} cosh g:2
+ {g, — v(2) — Kw(2)} sinh g,2] cos g.<]|
Ta = g[[{Ka(g, + 1/2)u(z) — Kp(1 + g,%)
— Ki(g, — 1/Qp2)u'(z)} cosh gz
+ {Ku(go + v(2)) — Ko(1 + g2)u(2) + Kau'(2)
+ Kw'(2)} sinh ¢,2] cos g,z
— [{Ko[1 = gw(2) ] + Ko(1 + g u(2) /2.2
— K/ (2) /9,2 + Ky’ (2) } cosh giz
+ {Ko(1 — g/QH)u(2) + Ko(1 + g,2)v(2)
— Ko'(z) + Kwi'(2) (1 + ¢,/2.?) } sinh g;27sin g,2]]
_ (20¢)
T = (1/O)[L{(1 + g,M)v(2) + K.(1 — g,/2D) u(2)
+ (14 9,/2M)u'(2) — Ko'(2)} sinh giz
+ {1+ g)u(2) /22 + K.(1 — g (2))
+ g0/ (2) — Ka'(2)/Q,2} cosh g,2] sin g,2
+ [+ gHul2) — Ko(g, + v(2)) — Ka'(2)
—v'(2)} sibh gz + {1 + g,* — Kc(g, + 1/} u(2)

(19)

Ty =

(20b)

+ (g9, — /924 (2)} cosh g:z] cos g.2]] (20d)
in which
Ko =14 s%(g2—1/Q9/06
Ky = s*(g, + 1/2,%) /0
K. = s2(g, — 1/9,%) (21a)
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2K, 2
=14g2— K {gp+ﬂp

1 + QP4 852

— Q2(1 — g,2,%) (1 _ s, )} (21b)

2872 Q p4Si4

569

I

1 1 1 1
— = e Im = - 27
R@ & {92} Re @7
B. Behaviors in a Circular Bend

The behaviors of a light beam in a circular bend as

shown in Fig. 1(b) can be described in a similar manner as

p1 cosh 2g,2 — ps sinh 2g.2 4+ p» cos 2g,2 — Q24 sin 2g,2

ps cosh 2.2 — py sinh 2g.2 — pa cos 29,2 — (p2/Q,2) sin 2¢,2

_ (1/9,}) (ps cosh 2g.z — p; sinh 2g:2) + Q,°p4 cos 2¢,2 + ps sin 2g,2

ps cosh 2¢,z — pysinh 29,2 — py cos 2g.2 — (p2/Q,2) sin 2g,2

. (21e)

u(z) =

v(2)

, _ 1 du(?) , _ ldv(z)
u'(2) = Pt (2) = 0 i

In (20a)—-(20d) and (21a)-(21c), the parameters g,, Q,,

sy 8i, and p; (5 = 1,2,3,4) are represented as

9 = gilgn Q= (Re {é} /Im { %})I/z
o= (el /il
w (3] /1o )

1 1
p1=1+—;+ﬂp4(1+—4)
8; 8y

1 . 1
:02=1-;?+9p 1—;

et 1 1 1
ps”(s—,ﬁ;z) 1’4=2(;r;§)-

Moreover, the expressions for the spot size w(z) and
the curvature of the phase front 1/R(2) of the Gaussian
beam are obtained, respectively, as

(22)

wie) = (u(z)/ Re %})M (23)
Eg—z)' = k_ﬁﬁz Re Ié} (24)

For the special case that 1/82(0) = 1/Q2, we have the
simplified results for 8(2), 8'(z), w(z), and 1/R(z) as
follows:

8'(2)

(26)

v = (e L) =

8(2) cos g,z — (gi/gs) 8in g,z
= exp (9.2)
—g.(1 + g#/9?) sin g2

in the straight section. The result of the analysis yields
the response of a Hermite Gaussian wave beam with the
same incidence conditions as in the straight section as
follows: the wavefront coefficient 1/82(z), the trajectory
of the beam center 3(z), and its slope ¥’ (2) are obtained as

1 1 <cos gz — 7[8%(0) /2] sin §z> (28)

S2(2) - S2(0) \cos §z — j[£2/8%(0) ] sin jz
{Tn
TZI

[5(2) — 3.(2) }
¥ (2) — 8./ (2) -

T 5(0)
. (29)
T [ 87(0) — 5.(0)

where
~ 1
T et ey et a— » 2 2~ ~
BC(Z) grz(]. + ﬁ,,z)R [[{1 gP + gpv(z) }
» (1 — cosh §;2 cos §.2)
- ﬁ/(z) (1 - !7p2 + 25;:/@,?) sinh §1z [¢]8}3] grz
— [a(2) {26, — (1 — §2)/Q,*} cosh §az
-+ {2gp - ?7(") (1 - gn2>} sinh ng] sin ﬁ,z]] (30)
and
- d .
8 (2) = — 8.(2). (31)
dz

In (30), the parameters §,, 3,, %(2), and 5(z) are obtained
from (21a)—(21c) and (22) by replacing all the parameters
g- and g; in those expressions by §. and §; given in (16),
respectively. The components of the real-valued ray trans-
fer matrix [T;;] are also obtained from (20a)-(20d) and
(21a)~-(21c) with the same procedure.

Furthermore, the spot size #(z) and the curvature of
the phase front 1/R(2) of the Gaussian beam are derived

(1/9,) sin g2 8(0)
cos ¢.2 -+ (g:/g.) sin ¢.z || §' (0)
from (23) and (24) by replacing all the parameters u(z2),
v(2), and 1/Q* in those expressions by %(z), #(z), and

(25)
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Fig. 3. Propagation behaviors of the convergent light beam guided
along the straight section. (a) Normalized trajectory of the beam
center. (b) Normalized spot size. (g:/g. = —0.01, e;/e, = 1078,

8'(0) = 0, R(0) = Ro.)

1/2, respectively, where 1/G? represents the characteristic
wavefront, coefficient in the circularly bent section.

Consider the special case that the light beam with the
matched input wavefront coefficient 1/8%(0) = 1/Q2 is
incident, upon the circularly bent section. In this case, the
expressions for 3(2), & (2), @(2), and 1/R (z) are simplified
to

3(z) = exp (§i2) [(cos gz — g—isin g,z) {6(0) — 6.}

+ 2 ;0) sin ﬁrz] + 6. (32)
- E
8 (2) = exp (§2) [—{6(0) — 8} s (1 + !%) sin §,z
+ &'(0) (cos gz + gjsin g,z)] (33)
1 —1/2
w(z) = (Re [§]> = 1y (34)
1 1 1 1
Fo £ E = 2
where
o, = 1 gpz + 2g»/992 (36)

g*(1+gHR

C. Numerical Examples and Discussions

According to the theoretical results obtained in the pre-
ceding sections, let us illustrate numerically the propaga-
tion behaviors of the Gaussian beam in the straight and
circularly bent sections. Figs. 3-6 show the calculated
trajectories of the beam center 6(z) and 3(z) normalized

by the input value 8(0), and the calculated spot sizes
w(z) and @(2) normalized by the characteristic spot sizes
wp and @y, as a function of the normalized distance z/g,~!
or z/§,~t. The medium constants ¢:/¢g., §:/§., /e, and
1/§.R and the input conditions of the light beam, the
values of §(0), §'(0), w(0), @(0), R(0), and B (0) used for
the numerical calculations are given in these figures. The
curves (I), (II), and (III) correspond to the cases that
w(0) = 2wo, w(0) = wy, and w(0) = wo/2 in the straight
section, and w(0) = 2@, w(0) = o, and w(0) = W/2 in
the circularly bent section, respectively, where w(0) is the
input spot size. Figs. 3 and 5 illustrate examples of the
convergent propagation for the cases of ¢i/g. G/, =
—1072, and Figs. 4 and 6, those of the divergent propaga-
tion for the cases of g./¢g., §i/§, = 1072 Generally, it is
shown that the convergent propagation as shown in Figs. 3
and 5 occurs for the negative values of g¢:/g, and §:/§,,
while the divergent propagation as shown in Figs. 4 and 6
occurs for the positive values of g:/g. and §./§.. Further-
more, it follows from (18)—(23) and (28)—(35) that the
critical propagation occurs for zero values of ¢:/¢. and
§i/Gr in which the light beam propagates with constant
amplitudes of the undulations of the beam trajectory and
the spot size, neither converging nor diverging.

If we roughly compare the propagation behaviors of the
light beam in the circularly bent section with those in the
straight section, the following becomes clear: in the
straight section the undulating trajectory decreases or
increases in amplitude with increasing distance z for all
cases of (I), (II), and (III), repeating sinusoidal and
monotonous oscillations as shown in Figs. 3(a) and 4(a),
while in the circularly bent section it exhibits extremely
complex oscillations as in Figs. 5(a) and 6(a) except for
the case (II) in which the matching conditions for the
wavefront coefficient are satisfied. The response of the
spot size, however, displays no special difference in the
straight and circularly bent sections, as is clear from Figs.
3(b)-6(b).
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Fig. 4. Propagation behaviors of the divergent light beam guided
along the straight section. (a) Normalized trajectory of the beam
center. (b) Normalized spot size. (g:/g, = 0.01, /e, = 1073,
3'(0) = 0, R(0) = Ry.)
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Fig. 5. Propagation behaviors of the convergent light beam guided
along the circularly bent section. (a) Normalized trajectory of the
beam center. (b) Normalized spot size. (@./g, = =0.01, e/e =
1073, 1/9,R = 0.2, §'(0) = 0, 8(0) = 24, B(0) = Ry.)

D. Physical Explanation of the Convergent, Divergent,
and Critical Propagation Behavior

Consider a light beam guided along the straight section
of the lens-like medium, the incidence conditions of which
are assumed to be arbitrary within paraxial approxima-
tions. The light beam can be expressed in terms of an
infinite series of normal modes of the medium, Hermite-
Gaussian wave beams. The normal modes in the complex-
permittivity lens-like medium proceed with the propaga-
tion constant v, given by (17), whose field intensities vary
along the z direction with the function exp (—as2), in
which «, denotes the real part of v,

Begin with the case of g, < 0. In this case, the second
term of (37) is always positive, and hence o, assumes large
positive values for increasing mode number n. Therefore,
the more n increases, the more rapidly the function
exp (—anz) decreases with increasing values of z. That is
to say, the higher order modes decay more rapidly with
increasing values of z than the lower order modes. Hence
for this case, convergent propagation of the light beam
arises as shown in Fig. 3. Contrary to this, for the case of
g: > 0, the second termn of (87) is negative, so that o,
becomes large in negative values for increasing n. Accord-
ingly, for larger n, exp (—au.2) grows more rapidly with
increasing z, so that the higher order modes become in-
creasingly dominant as the light beam propagates, which
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Fig. 6. Propagation behaviors of the divergent light beam guided
along the circula,rlg; bent section. (a) Normalized trajectory of the

beam center. (b)

ormalized spot size. (§:/g, j§= 0.01, e;/e, = 1078,

1/9:R = 0.2, &/(0) = 0, 3(0) = 25, R(0) = R,.)

causes divergent propagation as illustrated in Fig. 4. On
the other hand, for the case of ¢; = 0, we have a, =
k; = constant, independent of mode number n, so that
exp (—aq2) takes the same wvalues for all the normal
modes. As a result, the ratio of the normal modes to each
other does not vary as the values of z increase, which
implies that ecritical propagation with the constant ampli-
tudes of undulations occurs.

A similar physical explanation is also possible for the
propagation behavior of the light beam along the cirecu-
larly bent section.

E. Relationship between the Complex-Permitiivity Profile
and the Conditions for the Convergent, Divergent, and
Critical Propagations

The conditions for the convergent, divergent, and criti-
cal propagations of the light beam ¢; < 0, g; > 0, and
g: = 0 can be rewritten as G2 < G2, G2 > G2,
and G2 = ¢G?, respectively, in terms of the medium
constants characterizing the complex-permittivity profile.
If we introduce new parameters ¢, and G2 defined by
& = /e, and G2 = G2/G2, we can illustrate the above
conditions in the ¢,~G,? plane as shown in Fig. 7, assuming
«@? > 0. The batched region above the oblique line
G2 = ¢ is the divergent region leading to divergent
propagation, while the region below the straight line
G2 = ¢, is the convergent region causing convergent
propagation. Moreover, the region on the oblique line
G2 = ¢ is the critical region giving rise to critical propa-~
gation. The points a,b,+ - + 7 in the same figure correspond
to the complex-permittivity profiles as illustrated in

Fig. 7. Conyergent region (G;* < ), divergent region (G2 >
) and critical region (G} = ¢,), assuming that G2 > 0.
Diagonal area: divergent region according to the present analysis,
g]ot[%e}d area: divergent region according to the previous analyses

Fig. 2(a),(b),(c),++,(i), respectively. The points e;, es,
es, and 4y, %, % in Fig. 7 correspond to the profiles (1),
(2), (3) in Fig. 2(e) and (i), respectively. The profiles
such as Fig. 2(b), (g), (h), and (1) in Fig. 2(e) and (i)
belong to the divergent region in Fig. 7 and give rise to
the divergent propagation of the light beam as shown in
Fig. 4, whereas the profiles such as Fig. 2(c), (d) and (3)
in Fig. 2(e) and (i) belong to the convergent region in
Fig. 7 and lead to the convergent propagation as shown
in Fig. 3. Furthermore, the profiles like (2) in Fig. 2(e)
and (i) belong to the critical region, causing the critical
propagation in which the light beam propagates with a
constant amplitude of undulation.

Converging and diverging behaviors of light beams have
already been discussed in the previous papers [3]-[6].
In those papers, however, the parameter corresponding
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t0 g; used in the present paper (for example, the parameter
b; of [6]) is approximated as

= £ {(1/26)[(GA + Gy —

using the assumption |e | <e, where the upper or
lower sign is chosen, depending on whether G2 > 0 or
G2 <O.

Accordingly, the divergent and convergent regions
presented in the previous papers [3]-[6] would be repre-
sented by the upper half-plane G,2 > 0 and the lower half-
plane G2 < 0 of Fig. 7, respectively, and also the critical
region by the abscissa G2 = 0, disagreeing with the
preceding results of the present paper. Consequently,
profiles such as Fig. 2(h) and (f), in which both G2 > 0
and ¢; < 0, or both G < 0and ¢ > 0, are assumed with
& > 0 and G2 > 0, would belong to the divergent and
convergent regions, respectively, agreeing with our results.
On the contrary, the profile (3) in Fig. 2(e), in which
G2>0and ¢, >0 as well as ¢ >0 and G2 > 0 are
assumed together with ¢G? < G2, would belong to the
convergent region of Fig. 7, and hence cause divergent
propagation, according to the previous analyses [37]-[6].
The result does not agree with the present paper, where a
profile like this should lead to convergent propagation,
. because of the convergent assumption G2 < G2 as
stated before. Furthermore, the profile (1) in Fig. 2(i),
in which G < 0 and ¢ < 0 are assumed with ¢ > 0
and G > 0 as well as &G? > ;G2 would be regarded
as ‘‘convergent,” if we accepted the conclusion of the
previous papers [3]-[6], while according to the present
paper such a profile must be regarded as ‘“‘divergent”
because of the assumption G2 > G2, as described
before. Moreover, profiles such as in Fig. 2(d) and (g), in
which both G2 =0 and ¢ > 0, or both G2 =0 and
¢ < 0, are assumed together with ¢ > 0 and G2 > 0,
would be regarded as “critical,” if the previous conclusion
were applied, whereas according to the present paper the
profile as in Fig. 2(d) must be regarded as ‘‘convergent,”
since the convergent condition G2 < ;G2 is satisfied
with the assumption G2 = 0 and ¢; > 0, and the profile
as shown in Fig. 2(g) must be regarded “divergent,” since
the divergent condition G2 > ¢,G? is satisfied with the
assumption G2 = 0 and ¢; < 0.

Thus we must conclude that the previous papers [3]-[6]
do not always yield satisfactory results in regard to the
criteria for the convergent, divergent, and critical propa-
gation behavior of the light beam along the lens-like
medium with complex permittivity.

G (38)

IV. CONCLUSION

The primary characteristics of the light beam guided
along the square-law lens-like medium with loss or gain
have been analyzed in more detail theoretically and
numerically within the paraxial beam approximations.
As a result, the effect of the loss or gain distribution of the
medium on the propagation of the light beam has been
clarified more completely than in the previous analyses.
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The present paper presents useful material not only for
the evaluation of the effects of the loss distribution inherent
in practical optical fibers consisting of lens-like media, but
also for the analysis or synthesis of laser resonators or
amplifiers including a loss or gain profile in the transverse
cross section [87, [97]. The results of the present paper will
also be applicable to the optical image transmission system
consisting of lens-like media with a loss or gain variation

(10].

APPENDIX
SOLUTION OF THE PARAXIAL WAVE
EQUATION (13)

An exact solution of (13) is a light wave with Hermite-~
Gaussian transverse field distribution, Thus we express the
field distribution function in the form

U(z,2) = exp[A(2)a2 + B(z)z + C(2)]
H.[D@Z)z+ F(z)] (A1)

where A(z), B(2), C(2), D(2), and F(2) are unknown
parameters, being functions of z, and H,,(X) refers to the
Hermite polynomial of the nth order, defined as

{n/2] ( — 1) m (2X) n—2m

L (X) = nl 2
He (X) = n m{:o ml(n — 2m) | (A-2)
with
n/2, for n = 2,46,--
n/2 =
(n — 1)/2, for n = 1,3,5,+- .

Substitute (A.1) in (13) and use the recurrence relation

2(n — )H,, ,(X) = 2XH,,_ (X) — H,,(X) (A.3)

to eliminate the terms of H,,_,(X). Then we obtain
{1(2)2” + L2(2)@ + As(2) } - He[D(2)2 + F(2) ]
+ (M) + A5() ) He, i [D(D2+ F(2)]=0

where A;(2) (7 = 1,2,-+-,5) denotes functions of z alone,
including A (2),B(2)~F (2) and their first derivatives with
respect to 2.

By rearranging the terms in (A.4) with the help of the
expansion of the Hermite polynomials, we can express
(A.4) as a descending power series in z. To determine the
unknown parameters A (2), B(2)—F (z), we compare terms
with equal powers of # and have the following set of dif-
ferential equations: ‘

72 228 = 4oy — oo

(A.4)

72k(0) d—B-(fl = 44 (2) B ()

dC’( )

2k(0) = B2(z) + 24(2) — 2nD?(2)
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dD (z)

Jk(0) —= = 24 (2) D (2) + D%(2)

()

jk(0) —— = B(2)D(2) + F(2)D*(2).  (A.5)

Integrating (A. 5), we obtain

k k(0) 1 di(z)

AB) = 17570 &

dA(z)

B(z) = —2A(2)A(z) — jk(0) ——

( ) da(z)

Ae) =
2
— (n+PIeE - nDE) + K

-1/2
D@ = (Kt +ip 2 [ 55)

F(2) = D(2) {Kst(2) — A(2)}
with

Ce) = AR A 2) +7——

(A.6)

£(2) = arexp (Jg2) + az exp (—jgz)

A(2) = biexp (jgz) + biexp (—jg2). (A7)

In the foregoing expressions, aj, as, by, bs, Ky, Ks, and K;
represent integration constants to be determined from the
incidence conditions of the light beam.

"For convenience, let the field distribution function of
the input light beam U (z,0) be expressed as

U(z,0) = exp[“ tz— A0

_2;8_2((—))— -—_ ]k(O) A’ (0) l‘]

z — A(0)
H[ 50)

and determine the integration constants and the unknown
parameters A(z), B(2)-F(2). As a result, we get from
(A.D)

Ulz,2) = exp [A(2) {z — A(2) }* — jk(0) A" (2)
+ jLk(0)/2]{A(2) A" (2) — A(0)A"(0)}]

.__(cos gz + j[2*/8*(0) J sin gz) /2
(cos gz — 7[Q2/ SQ(O)j sin gz) D2

] (A.8)

H [ xr — A(z) ]
" 1.8(0) {cos? gz + [Q*/8*(0) ] sin? gz}1/2
(A.9)
in which
A(z) = A(O) cos gz + A';‘)) singz  (A.10)

B.(2)
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) = &
Al(z) = 7 A(z) (A.11)
_ 1 cos gz — 7[82(0) /2] sin gz
A = — 252(0) (cos gz — j[92/82(0) ] sin gz) (A-12)
Q = 1/[gk(0) ]2 (A.13)

In the above expressions, 1/82(0) is the input wavefront
coefficient of the light beam and 1/92 is the characteristic
wavefront coefficient. Furthermore, A(0) and A’(0) are
unknown constants to be determined frora the input slope
§'(0) and input displacement (0) of the beam center.

From (A.10), (A.11), and (2)—-(4) in the text, we see
that A(z) and A’(2) in (A.9) are complex-valued, and
hence do not represent the beam trajectory of the light
beam 6(z) and its slope §’(2), respectively. To find 5(2)
and &' (2), let A(2) and A’(2) be separated into the real
and imaginary parts as

JAR) = Ar(z) +jAi(?)
A(z) = A/ (2) + JA/ (2) (A.14)

and let the sum of the first and second parts of the expo-
nential term in (A.9) be transformed as

A@) e — A@ Y} — Jk(0) A (2)
B.(2) }2
24,(2)

{4:(2)B.(2) —

= A(2) {x-i—

—JA @ 4,(2)Bq(2)}

+ 4(2) {AZ(z) — M}

142(2) (4.15)

where 4,(z) and 4;(2) are the real and imaginary parts
of 4(z), and B,(2) and B;(z) represent the real-valued
functions as

B.(z) = —2{A

r(2)A4:(2) — Ai(2) Ai(2) }

+ kA (2) — kA (2)
= —2{4.(2) A:i(2) + 4:i(2) A.(2) }

— kA (2) — FiAS (2). (A.16)
From (A.15) and (A.16), we get the expressions for the

trajectory of the beam center §(z) and its slope 8’ (2) as

_ _B® _ A2
8(z) = 2. (2) A,(2) 1.2 A:(2)
k,’A,-/ (2) - krA,;/ (Z)
T oA (A.17)
8 (2) = d%é(z) (A.18)

Puting z = 0in (A.17) and (A.18) yields two equations

in two unknowns, A(0) and A’(0). Solving for these un-
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knowns, we obtain

kiSfZ 4
+ T orsag" © &
o) = — — S (9 9
+—21 50 (A.20)
14+ 2k:8,%2Q '
where
Qr4Qi4 1 gr gi
Q= ot + o [Srzsi2 <Q—TZ - —’5>
1/1 1 gi gr
3 (za ) as)] e
with
1 1 1 !
fi? = Re {Eﬁ} ’ EE} -7 IIH;{&?}
1 1 1 !
82 Re{32<o>}’ 82 Im{swm}‘ -

Substituting (A.19) and (A.20) in (A.14), (A.17), and
(A.18), we can determine 8(z) and &' (z), and hence from
(A.9), the response of Hermite—Gaussian wave beam with
the input displacement of the beam center §(0) and
its slope 6’ (0) as well as the input wavefront coefficient
1/82(0).

The expressions for the spot size w(2) and the curvature
of the phasefront 1/R(z) of the Gaussian beam are also
derived from the real and imaginary parts of A (z) as

w(z) = 1/[—24,(2) I* (A.23)
12
70 =R A@- (A.24)

Lengthy and tedious algebraic manipulations on (A.17),
(A.18), (A.23), and (A.24) together with derivations of
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A,(z) and 4,(2) from (A.12) lead to the final results, (19),
(23), and (24) in the text.

If we assume the incidence conditions 1/82(0) = 1/02,
6(0) = 0, and §'(0) = 0in (A.9), we have the simplified
expression for U (x,2) as

U(ze) = exp [j(n+ gz — «2/208]-H, [2/Q@]. (A.25)
Substitution into (11) yields
V(zz) = exp [—j{k(0) — (n + 3)g}]
-exp [—3(2/Q)?]H.,[2/Q].  (A.26)

From (A.26), we find the propagation constant of the
normal modes in the straight section v, as

o = 7{k(0) — (n + g}
= jik, — jk: — (n + 3) (¢ — Jg) }.
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